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Abstract 

We investigate how the digital business model of on-demand ridesharing platforms like 
Uber and Lyft interacts with an established, centralized public mass transit system. Our 
study uses data on ridesharing, taxi, shared bike, and subway usage in New York City 
and exploits a series of exogenous shocks to the system – the closing of subway 
stations – to isolate substitution effects. We find that the average shock is associated 
with a 2.8 - 3.3% increase in the use of ridesharing, which translates into 5.5 additional 
Uber rides and 1.5 additional Lyft rides per taxi zone and four-hour period. Although 
this suggests that on-demand ridesharing acts as infrastructure that helps smooth 
unexpected transportation supply and demand surges, the estimated effect is small 
relative to the average number of subway rides displaced. Our results indicate that the 
flexibility inherent in ridesharing’s crowd-based business model could be further 
exploited to support capital-intensive transit systems in the future. 

Keywords: ridesharing; sharing economy; cities; transportation; difference-in-
differences; digital business models 
 

Introduction 

Digital technologies are changing mobility business models, increasingly influencing how people move in 
physical space. As sharing economy business models transform the transportation sector, digitally-
enabled platforms like Uber and Lyft in the US, Didi Chuxing in China and Latin America, and Ola in 
India have begun to challenge traditional urban transportation providers, expanding the options available 
to city residents and offering the promise of an increasingly multi-modal urban transport future.  

Ridesharing companies highlight how their flexible digital business model allows service provision where 
public transit has failed. Lyft runs a “friends with transit” campaign and advertises “one gajillion new 
stops,” with services that take riders “the rest of the way” (Lyft 2015). For April Fool’s day in New York 
City, Uber announced a premature “expansion” of Manhattan’s long-awaited Second Avenue subway line, 
offering rides along Second Avenue for the price of a subway fare (Ninomiya 2014). And in San Diego, 
Uber explicitly claims: “gaps in public transportation become hubs for Uber…we complement public 
transit” (Donahue 2015). 
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In this paper, we investigate the extent to which ridesharing supplements public transportation at the 
system level. Specifically, we treat subway station closures in New York City as a natural experiment, 
using open data on Uber, Lyft, taxi, Citi Bike, and subway ridership to study how crowd-based capacity 
harnessed via a platform may serve as “invisible infrastructure” that absorbs the demand spikes caused by 
disruptions to centralized public mass transit. This is an important instance of a broader question – how 
digitally-enabled, decentralized systems can work alongside centralized infrastructure – whose answer is 
key to understanding the value of platform-based business models. 

We answer three focused questions. First, do riders substitute to taxi, platform-based ridesharing, or Citi 
Bike when faced with subway disruptions? We find that subway service disruptions are associated with 
statistically significant increases in the use of Uber, Lyft, and taxi services, but at the city level, we find no 
evidence of a significant increase in Citi Bike use. 

Second, do riders prefer the digital alternative – platform-based ridesharing – over the physical-world 
alternative – traditional street-hail taxis – when faced with a public transit disruption? In percentage 
terms, we find no evidence of a citywide preference for Uber and Lyft relative to taxis. While subway 
service disruptions are associated with 2.8% and 3.3% increases in the use of Uber and Lyft, respectively, 
they are associated with 8.2% and 7.0% increases in the use of yellow and green taxi services. 

Third, how much of displaced subway ridership do the digitally-based and physical-world modes 
absorb, and which modes absorb the greatest number of displaced riders? We find that the digitally-
enabled modes absorb only a small fraction of displaced riders, and that they likely have the ability to play 
a far greater role in the future. On average, we estimate that each disruption displaces over 1,500 rides, 
but that the corresponding increases in taxi, platform-based ridesharing, and Citi Bike use together 
account for less than 40 additional rides. In terms of the absolute number of riders accommodated, we 
estimate that ridesharing plays a more important public transit role relative to taxis in the “outer 
boroughs” of Brooklyn, Queens, and the Bronx (relative to Manhattan), and that the significance of this 
role is growing over time. 

Our findings suggest that the strategy adopted by digital transit players – i.e. competing for market share 
among consumers inconvenienced by public transit – makes sense; platform-based demand is increased 
by subway disruptions. However, these modes are not currently absorbing the majority of displaced 
riders. This suggests that the flexibility inherent in their crowd-based business model could be exploited 
further. Finally, although an increase in Uber, Lyft, and taxi rides during periods of subway service 
disruptions matches our expectations, the magnitude of this increase – and the variation in effects across 
modes, space, and time – is harder to predict, highlighting the value of quantitatively estimating the 
impact of digital platforms on centralized infrastructure systems. 

Literature Review 

Using national panel datasets, a number of recent studies have investigated substitution and 
complementarity between ridesharing and public transit in cities across the US. For example, using 
variation in the timing of Uber’s market entry across cities to fit a difference-in-differences model, Hall et 
al. (2018) find that ridesharing is a complement for public transportation, leading to a 5% increase in 
ridership over a two-year period. Nelson and Sadowsky (2017) add nuance to this narrative by exploring 
how competition influences the effect of ridesharing on public transportation. They find that ridesharing 
is initially a complement to public transportation after the entry of the first ridesharing provider, but – 
presumably as a result of competitive pressure to reduce prices – becomes a substitute once a second 
ridesharing provider arrives. 

Also using a difference-in-differences approach, Babar and Burtch (2017) find differential effects by 
mode, arguing that Uber has decreased the use of city bus and increased the use of subways and 
commuter rail. This is consistent with Clewlow and Mishra (2017), who use a survey of seven cities to 
conclude that ridesharing use was associated with a 6% decline in the use of public transportation at the 
individual level; they find that the negative effects of ridesharing were concentrated on bus and light rail 
services, whereas ridesharing was a complement for commuter rail.  

These studies estimate the effect of Uber and Lyft across a large number of US cities. However, a key 
takeaway from these studies is that the impact of ridesharing on public transit is not uniform; for 
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example, Babar and Burtch (2017) find that the quality of service provision moderates the effect of 
ridesharing on transport use, while Hall et al. (2018) find that complementarity is strongest for small 
transit agencies and big cities. 

A better understanding of such heterogeneous impacts is crucial because the typical US city can be quite 
different from a large one. Most American cities are characterized by low urban density (“sprawl”), high 
levels of car ownership, and low transit coverage. A focus on such cities overlooks the experience of many 
of the nation’s transit users, which are located in dense urban areas: the Federal Transit Administration’s 
most recent ridership data indicates that 42% of nationwide transit rides taken in June 2019 were 
affiliated with New York’s Metropolitan Transportation Agency  (Federal Transit Administration 2019).  

There are three ways in which the role of ridesharing platforms might differ in a city like New York. First, 
ridesharing platforms may face more competition as a driving alternative. There are multiple good 
options, including a strong taxi industry and a widely-used public transportation system; for example, 
Walk Score has ranked New York #1 in the nation for walkability and transit scores (Walk Score 2019).  

Second, large cities may face greater challenges given systematic substitution to ridesharing alternatives. 
For example, New York struggles with worsening traffic congestion and the need to reduce the number of 
vehicles in Central Manhattan. Given that the subway saw almost 5 million daily rides on average in our 
sample, replacing even 10% of these trips with ridesharing would more than double the number of daily 
Uber trips as of June 2018. 

Despite these potential constraints, one key promise of ridesharing platforms in this context is their 
ability to provide additional, dynamically responsive capacity to supplement existing transit systems. For 
example, hailing a car using an electronic app may enable riders to react quickly to unexpected route 
changes, and (with the help of surge pricing) may attract drivers to areas in need. From this perspective, 
ridesharing platforms may offer superior alternatives to taxi or bikeshare services, which do not have this 
rapid response capacity enabled by platform algorithms in combination with flexible supply. Nevertheless, 
we are aware of no existing studies that examine this “invisible infrastructure” functionality.  

 

 

Background shows daily fluctuations in ridership; foreground shows centered 30-day moving averages. 

Figure 1. Daily Ridership (January 2015 – June 2018) 
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Relative to prior research, our work provides three key contributions. First, we formally document the use 
of ridesharing in response to subway disruptions, quantifying the extent to which New Yorkers use 
ridesharing as an emergency alternative. Second, we provide evidence on the role of ridesharing relative 
to other modes in the context of disruptions, generating insights into the comparative value provided by 
these new sharing economy entrants. Finally, we explore the relationship between ridesharing and public 
transportation in granular detail: rather than comparing monthly ridership across aggregate categories of 
transit modes in metropolitan areas, we are able to study ride choices by mode at four-hour intervals 
across different regions of the city. Our approach builds on existing results by contributing to a more 
holistic understanding of how ridesharing alternatives integrate into public transit systems. 

Context 

Mode choice in NYC 

To examine these questions, we use open data from the city of New York, a natural setting for this study. 
The tri-state area is home to the largest public transportation system in the United States, and in the 
course of our study period, the subway recorded an average of 4.8 million rides per day (Metropolitan 
Transportation Authority 2018a).  

New York City is also home to a growing number of ridesharing users. For example, from January 2015 to 
June 2018, Uber pickups grew more than 7-fold, from under 60,000 daily rides to over 440,000 daily 
rides. Similarly, from April 2015 – June 2018, Lyft pickups grew more than 40-fold, from an average of 
under 3,000 daily rides to over 120,000 daily rides (see Figure 1). Our analysis also includes three other 
popular mode choices: yellow taxis (approximately 345,000 rides per day during our period of 
observation), green taxis (approximately 41,000 rides per day during our period of observation), and Citi 
Bike (approximately 29,000 rides per day during our period of observation) (Citi Bike NYC 2018; Taxi 
and Limousine Commission 2018a). Yellow taxis are the classic mode of for-hire transportation in New 
York, with a service area that is heavily concentrated in lower Manhattan. Green cabs, or “boro taxis”, 
were introduced in 2013 to offset this spatial disparity; they serve uptown Manhattan and the outer 
boroughs, and are prohibited from picking up street passengers in Manhattan south of West 110th Street 
or south of East 96th Street, or at the airport (Taxi and Limousine Commission 2018b). Finally, Citi Bike 
has operated as New York’s bike share alternative since 2013; as shown in Figure 1, its ridership is highly 
seasonal. Citi Bike’s docks are concentrated primarily in central Manhattan and western Brooklyn, though 
its service area continues to expand.  

Although the growth in ridesharing has affected all parts of the city, the shift in mode share has been most 
dramatic in the outer boroughs. According to our data, by 2018 both Uber and Lyft were providing more 
average daily rides in the outer boroughs (combined) than within Manhattan. In non-central zones – such 
as in the Bronx and the far reaches of Queens and Brooklyn – daily ridesharing use can be one or even two 
orders of magnitude higher than taxi use. This reflects the expansion of ridesharing in virtually every taxi 
zone in the city over time as the distribution of taxi ridership has remained geographically concentrated. 

Subway Disruptions as an Exogenous Shock 

While there is a popular consensus that ridesharing has significantly damaged the taxi industry (Fischer-
Baum and Bialik 2015), there is an ongoing debate on the extent to which ridesharing has influenced the 
use of the subway. Among monthly ridesharing users surveyed in New York’s 2017 Citywide Mobility 
Survey, 50% reported that ridesharing replaced public transport trips, while 43% reported that it replaced 
taxi or car services (NYC Department of Transportation 2017). However, only 35% of New Yorkers 
surveyed were ridesharing app members. Furthermore, when the survey sample as a whole was asked to 
characterize ridesharing and the subway, ridesharing was less often characterized as “convenient” (47 vs. 
35%), “reliable” (23 vs. 19%), “fast” (23 vs. 15%), and “inexpensive” (23 vs. 8%). Both were perceived as 
comparably “safe” (15 vs. 13%), and ridesharing was more “comfortable” (14 vs. 20%). 

Even with rich mode choice data, the causal identification of substitution between ridesharing and public 
transportation is challenging for two key reasons. First, ridesharing and public transit use may be 
correlated due to external factors, which may be measurable (e.g. average income, population density, or 
weather), or unmeasurable (e.g. neighborhood popularity). Therefore, estimating the impact of one mode 
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on another requires controlling for these omitted variables. Second, there may be feedback between the 
two modes of transport. For example, ridesharing could attract riders away from the subway due to its 
convenience. However, this might lead to less crowding on the subway while street congestion worsens; as 
a result, riders might substitute back to public transportation. In this case, there is also a need to control 
for simultaneity between the two transport modes.  

To address these problems, we sought to identify a source of exogenous variation affecting either subway 
or ridesharing use. The analysis described below focuses on subway service disruptions, examining cases 
in which no passengers enter or leave a station for at least four hours. Such disruptions clearly reduce 
subway ridership, and it seems credible that they affect the use of ridesharing only through their 
immediate impact on the usability of the subway. Since disruptions affect different parts of the subway 
system at different times, we are able to use panel data analysis to control for neighborhood- and time-
specific variables which may drive ridership trends. 

While subway disruptions offer an opportunity to explore the relationship between modes, they are also of 
critical policy relevance to cities like New York. Officially opened in 1904, the New York City subway 
system is one of the oldest in the world, and the decline of its antiquated infrastructure is a contentious 
political issue (Metropolitan Transportation Authority 2019). Currently, policy discussions are focused on 
the system’s falling performance, and the decline in annual ridership that started in 2016. 

Disruptions are caused by a number of different problems, including: crowding and passenger behavior, 
scheduled maintenance, and emergency repairs. Leader and Cafiero (2015) estimate that these factors 
accounted for 40%, 26%, and 22% of delays in 2014, respectively. For example, trash thrown on the tracks 
by passengers can cause fires, and trains can be held in the station due to sick passengers or police 
activity. Some conductors believe that the signals installed to control train speed may be mis-calibrated 
and over-sensitive, triggering a train’s brakes even when it is not speeding; this leads them to slow down 
pre-emptively (Gordon 2018). Finally, some planned closures result from required upgrades to track 
infrastructure or the need to repair flood damage. Understanding whether taxi, ridesharing, and Citi Bike 
provide viable alternatives – and how much of the displaced ridership they are able to absorb – is of 
immediate concern in this context. 

Although our approach of using subway disruptions to study ridesharing is new, there is a broader 
precedent for the use of natural experiments in the economics of transportation literature. For example, 
Davis (2008) studies the impact of alternate-day restrictions on license plates in Mexico city. Using a 
regression discontinuity design, he finds that the net effect of the policy on a variety of pollution 
indicators is negligible, and that the policy actually increases the number of vehicles in circulation. 
Anderson (2014) studies the effect of a public transit strike in Los Angeles. Using a regression 
discontinuity design, he finds that the effect of the strike on highway congestion is larger than predicted 
under previous models. Although neither is a direct analogy to our approach, these studies underscore the 
potential of natural experiments to answer policy questions involving large-scale, established, and 
dynamic systems in which true experimentation is difficult. 

Hypotheses 

We test three core hypotheses. 

H1: In response to subway disruptions, ridership of taxi, ridesharing, and Citi Bike will increase. 

While this hypothesis is straightforward, it is useful for confirming our basic intuition. There are three 
alternative possibilities: riders could forego travel altogether; riders could substitute to alternative modes 
such as walking, bus, and driving; and riders could substitute to some of the modes above, but not all of 
them. 

H2: In response to subway disruptions, riders prefer ridesharing over taxi or Citi Bike.  

There are two reasons to believe that ridesharing is well-suited to addressing short-term disruptions in 
public transit. First, Uber and Lyft’s mobile apps may make it easier to connect with drivers during 
unexpected demand peaks — particularly in the outer boroughs, during rush hour, or late at night. 
Second, these platforms have access to centralized, real-time information on demand, making it easier for 
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them to address unanticipated peaks by encouraging additional drivers to move to the area, for example 
through the use of surge pricing incentives. 

However, ridesharing and public transportation may appeal to different individuals. For example, the cost 
of ridesharing may be prohibitive for people who rely most on the public system, a challenge that may 
only be exacerbated by the use of surge pricing. Ridesharing and public transportation may also be 
associated with different trip types: for example, individuals may prefer ridesharing for social trips, while 
they may rely on public transportation for commuting.  

H3: The rate of substitution to alternative modes is limited by capacity constraints. 

One concern with the use of alternative modes as described by H1 and H2 above is the possibility that 
these modes cannot fully absorb displaced demand. As discussed below, there are over 5,000 subway 
rides on average recorded per zone and four-hour period; none of the alternative modes described here 
surpasses even 10% of this ridership. The ability of taxis, ridesharing, and Citi Bike to respond to 
disruptions requires either that vehicles be available in disrupted zones, or that they can be quickly 
allocated to disrupted zones. Therefore, we examine how the excess demand resulting from subway 
disruptions compares to typical ridership in each zone. 

Data and Analysis 

We compile a dataset of ridership for the six transport modes described above, covering New York City for 
a period of three and a half years. Raw data on subway entries and exits by turnstile and four-hour period 
was collected from the Metropolitan Transportation Authority (Metropolitan Transportation Authority 
2018b). Data on taxi and ridesharing pickups by GPS location or taxi zone was collected from the Taxi and 
Limousine Commission (Taxi and Limousine Commission 2018a). Finally, data on bikeshare pickups by 
dock was collected from Citi Bike (Citi Bike NYC 2018). 

To create a compiled dataset for analysis, we restrict all datasets to the range of dates for which Uber 
pickup counts were consistently available: January 2015 – June 2018. To match the level of aggregation in 
the Taxi and Limousine Commission (TLC) data, subway and Citi Bike stations are assigned to a taxi zone 
using their GPS coordinates, and rides are aggregated over these taxi zones. The dataset is then restricted 
to taxi zones served by the subway system. Furthermore, because the subway turnstile data is primarily 
read in four-hour intervals starting at midnight, all zone-level ride counts are aggregated over the 
intervals preceding 12am, 4am, 8am, 12pm, 4pm, and 8pm (inclusive). The final panel dataset consists of 
𝑛 = 1,164,023 observations representing the count of rides by mode in 𝑖 = 153 taxi zones and 𝑡 = 7,608 
four-hour intervals.  

Dependent Variables 

Aggregate Ridership 

Modeling transportation choices typically involves design decisions regarding: the level of aggregation, the 
type of data used, and the unit of analysis (Ben-Akiva 2008; Ben-Akiva and Lerman 1985). As described 
above, we model ridership using count data, aggregated into markets defined by geography and time. Our 
data reflects preferences revealed by the actual behavior of transport users. Our unit of analysis is 
effectively trip starts or pickups; we observe the location and time at which riders begin to use a given 
transport mode. We focus on trip starts due to two constraints in the data. First, the New York City 
subway system uses electronic Metro Cards that charge passengers upon entry, but are not required upon 
exit; as a result, subway entries and exits cannot be matched at the individual level. Similarly, our Uber 
and Lyft data does not contain comprehensive information on drop-off locations until mid-2017. 
Consequently, we are unable to systematically identify passenger destinations, or to distinguish a 
multimodal trip from several independent unimodal trips. Instead, we assume a simple underlying model 
of behavior in which a rider, attempting to use the subway and finding that it is out of service, makes a 
choice among the available alternatives for completing the current trip leg; we study this choice.
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An example decomposition, showing Uber rides in the East Village (zone 79) over four-hour intervals in early 2017. 

Figure 2. Example Time Series Decomposition 

Adjusting Ridership Data for Trends and Seasonality 

Raw ridership counts vary substantially across taxi zones and time. Seasonal fluctuations in ridership 
occur by hour of day, day of week, and month of year. Furthermore, the nature of seasonality may be 
different for different taxi zones; for example, due to commuting patterns, remote zones may see a large 
number of rides initiated in the morning, while central zones may see a large number of rides initiated in 
the evening. As shown in Figure 1, there are also long-term trends in the use of different modes over time, 
and short-term citywide shocks due to factors like holidays or bad weather. 

To address this variability, we use time series decomposition to remove trends and seasonality from the 
ridership data for each taxi zone and mode. Since variance often increases with absolute ridership levels, 
we use a multiplicative decomposition. Specifically, for each for each taxi zone 𝑖 and mode 𝑚, we separate 
ridership into three components: 

rides𝑡   =   trend𝑡 ×  seasonalityℎ(𝑡),𝑑(𝑡) × residual𝑡                                             (1) 

That is, we first estimate and remove a centered three-week moving average trend about time 𝑡. Using the 
detrended data, we next estimate and remove seasonality by calculating the average detrended ridership 
for the corresponding hour of day ℎ(𝑡) and day of week 𝑑(𝑡) for the mode and zone over all periods. The 
result of this calculation is a series of residual changes in ridership that are not explained by trend or 
seasonal variations, which we refer to as adjusted ridership. An example of this decomposition can be 
found in Figure 2. 

Adjusted ridership has a simple interpretation. If the value of adjusted ridership is 1 (i.e. residual𝑡 = 1), 
then the number of rides in a zone is perfectly predicted using the zone’s time trend and seasonality: 
rides𝑡 = trend𝑡 × seasonalityℎ(𝑡),𝑑(𝑡). If adjusted ridership is 1.2, then the zone’s ridership is 120% of the 

ridership expected based on trend and seasonality alone: rides𝑡 = trend𝑡 × seasonalityℎ(𝑡),𝑑(𝑡) × 1.2. 

Similarly, if adjusted ridership is 0.8, then the zone’s ridership is 80% of the ridership expected based on 
trend and seasonality alone: rides𝑡 = trend𝑡 × seasonalityℎ(𝑡),𝑑(𝑡) × 0.8 . Therefore, changes in adjusted 

ridership capture a given period’s deviation from “normal” ridership in percentage terms. 
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We note briefly that adjusted ridership may be missing if there have been no rides for a given mode and 
zone in a three-week window (trend𝑡 = 0), or if there are never any rides for a mode and zone in a given 
hour-of-day day-of-week bin (seasonalityℎ(𝑡),𝑑(𝑡) = 0). In these cases, computing the residual involves 

dividing by zero and we drop such observations. We also note that the distribution of the adjusted 
ridership variable, while having a mean value of 1, is not symmetric; we therefore also drop occasional 
outliers with high adjusted ridership values (>10) to prevent these observations from having undue 
influence on our estimates. Since such cases are rare, we do not consider this a major limitation. 

Independent Variables 

Inferring Subway Disruptions from Activity Data 

To test the hypothesis that ridesharing may act as a short-term substitute for public transportation, we 
next seek to identify subway service disruptions. A taxi zone is considered “disrupted” if one or more of its 
subway remote units (∼ stations) experiences no turnstile entries or exits within a four-hour period (note 
that disrupted zones can still experience turnstile entries, if other stations in the zone are open).1 When 
computing disruptions, we ignore any remote units that were continuously disrupted for more than two 
weeks, since we are interested in the impact of short-term changes in service availability. We also ignore 
any remote units that are disrupted only between 12:00am and 4:00am, to avoid accidentally labeling 
low-volume subway stations as “disrupted” in the early morning hours.  

Using this definition, we identify 3,331 “incidents” in which a taxi zone was continuously disrupted. These 
incidents correspond to 12,914 disrupted zone-period observations (1.1% of all observations), and affect 
110 of the 153 taxi zones. Brooklyn saw the highest average number of disrupted periods per zone, 
followed by Queens, the Bronx, and then Manhattan. Most disruption incidents (97%) lasted for two days 
or less, with 83% lasting one day or less, 67% lasting twelve hours or less, and 31% lasting for only four 
hours. Disrupted periods were most likely to fall on Saturday (26%) or Sunday (48%), which is consistent 
with the MTA’s frequent use of weekends for planned repairs.  

It is worth noting that this is a conservative definition of disruptions. As discussed, we have intentionally 
ignored some isolated late-night disruptions and long-term closures, although these types of service 
changes may impose a lot of hardship on riders. Assuming that these changes result in substitution 
towards alternative modes, failing to label these periods as disruptions should introduce an upward bias 
in our baseline ridership estimates for alternative modes. This should reduce our estimated impact of 
disruptions, making it less likely that we will find an effect. 

At the same time, this definition of disruptions does restrict our findings to incidents that are severe 
enough to appear in the data. Because of the limitations in the resolution of the subway data, we ignore 
disruptions that do not span an entire four-hour period. Furthermore, we have not captured disruptions 
that affect only one of the trains serving a station – e.g. express lines that are disrupted even if local trains 
are running – or that affect only one direction of traffic – e.g. northbound trains that skip stations even 
when southbound trains provide full service. The impact of lower-level disruptions is an interesting area 
for future work.   

Results  

Summary statistics 

An overview of the key variables in the dataset is shown in Table 1. On average, each zone experienced 
308 yellow taxi rides, 54 green taxi rides, 202 Uber rides, 45 Lyft rides, 72 Citi Bike rides, and 5,223 
subway rides in a four-hour period. As the median and maximum columns demonstrate, the distribution 
of ridership counts is highly skewed. For example, the median number of taxi rides per zone is 7 while the 
maximum is over 9,000. The median number of subway rides is just over 2,400, while the maximum 
exceeds 100,000. This motivates our use of adjusted and log dependent variables as described above. 

                                                             

1 A turnstile refers to a set of spinning metal bars, or a revolving metal gate, which regulates entry into the subway system and 
ensures that only one rider can pass at a time. Riders swipe their fare card to unlock the turnstile and enter the system. 
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The right panel of Table 1 illustrates borough-level differences in ridership. Manhattan taxi zones 
experience the highest average volume of rides across all observed modes, while zones in the Bronx 
experience the lowest volume. There are also notable differences in mode preferences across boroughs, 
illustrated graphically in Figure 3. Specifically, we calculate ridership by mode as the share of total 
observed rides for a given zone and period, averaged over all records in our dataset. We can see that 
yellow taxi and Citi Bike have a higher average market share in Manhattan than in the outer boroughs 
(12.7% vs. 0.1–2.4% for yellow taxi, and 0.8% vs. 0.1%–0.3% for Citi Bike). In contrast, the remaining 
modes – green taxi, Uber, Lyft, and the subway – have equal or higher market shares in the outer 
boroughs (0.9—2.5% vs. 0.8% for green taxi; 6.0—8.1% vs. 5.9% for Uber; 1.4—2.1% vs. 1.1% for Lyft; and 
87.0–90.4% vs. 78.7% for the subway).  

Note also that the count of subway rides in our sample is significantly higher than the count of rides with 
all other modes combined. The remaining modes (taxi, ridesharing, and Citi Bike) together make up only 
10–21% of observed rides per zone and four-hour period. Finally, we note that due to the absence of high-
quality data, we exclude walking, buses, and driving from our definition of the “market”. According to 
estimates from the Citywide Mobility Survey, walking, buses, and cars together account for 68% of all 
trips citywide (NYC Department of Transportation 2017). Incorporating these modes would further 
reduce the estimated shares of taxi, ridesharing, and Citi Bike as subway alternatives. 

Table 1. Summary Statistics 

 Pooled Sample Manhattan Queens Brooklyn Bronx 

 
Mean 

Std. 
Dev. 

Median Max Mean Share Mean Share Mean Share Mean Share 

Yellow Taxi 308 690 7 9,109 904 12.7% 69 2.4% 18 0.9% 1 0.1% 

Green Taxi 54 110 10 2,154 161 0.8% 68 2.5% 48 1.7% 10 0.9% 

Uber 202 271 103 4,428 347 5.9% 125 6.0% 178 8.1% 70 7.2% 

Lyft 45 69 21 1,598 61 1.1% 37 1.7% 53 2.1% 15 1.4% 

Citi Bike 72 106 31 1,656 94 0.8% 13 0.1% 36 0.3% . . 

Subway 5,223 8,227 2,462 107,589 8,830 78.7% 4,104 87.4% 3,975 87.0% 2,295 90.4% 

Disruption 0.011 0.1 0 1 0.006 . 0.010 . 0.020 . 0.007 . 

Mean ridership is calculated over all zones and four-hour periods in the dataset. Market share was first calculated 
for each zone and four-hour period, and then averaged across zones and four-hour periods. For this reason the 
ordering of borough means does not always match the ordering of borough shares. 

 

The values corresponding to the slices in the chart are included in the “share” columns of Table 1 above. 

Figure 3. Average Market Share by Mode in the Compiled Dataset 
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Baseline specification 

Our baseline specification is a difference-in-differences model that predicts adjusted ridership using 
subway service disruptions and a set of period fixed effects. As described in the previous section, we first 
adjust our ridership counts to account for the substantial heterogeneity in ridership patterns across 
geographic regions, modes, and times. We explored numerous alternative approaches – including the use 
of a log dependent variable with a comprehensive set of fixed effects (discussed in further detail below), a 
ranked dependent variable, a count dependent variable, and the use of matching strategies. We have 
chosen to focus on our current approach because of its simplicity and flexibility. With the use of a de-
trended and de-seasonalized dependent variable, we are better able to interpret our estimated effects of 
disruptions as deviations from “normal” ridership patterns.  

Specifically, for each mode 𝑚 we (separately) estimate the following model: 

 adjusted𝑖𝑡   =  𝛽 disruption𝑖𝑡   +  𝛾𝑡  +   𝜖𝑖𝑡                                                      (2) 

where adjusted𝑖𝑡  represents adjusted ridership for zone 𝑖 in period 𝑡; disruption𝑖𝑡  is a binary indicator of 
whether zone 𝑖 suffered a subway disruption in period 𝑡 (independent of the mode); 𝛾𝑡 is a set of citywide 
fixed effects for each four-hour period in our dataset; and 𝜖𝑖𝑡 is an error term clustered at the taxi zone 
level. Note that zone-level fixed effects have not been included because they are effectively accounted for 
in the calculation of the adjusted dependent variable, which removed moving average ridership per zone. 
The coefficient of interest is 𝛽, the estimated impact of a disruption on the adjusted ridership of mode 𝑚 
for a typical taxi zone and four-hour period. We estimate this model using the adjusted ridership of yellow 
taxi, green taxi, Uber, Lyft, Citi Bike, and the subway as dependent variables. 

The results from estimating this model are shown in Table 2. These estimates support the hypothesis of 
substitution: disruptions are associated with a significant 8.2% increase in yellow taxi ridership, a 7.0% 
increase in green taxi ridership, a 2.8% increase in Uber ridership, a 3.3% increase in Lyft ridership, and 
no significant change in Citi Bike ridership. For comparison, we also fit the model to the subway data, and 
estimate that subway ridership is on average 29% lower than usual when at least one station in a taxi zone 
is disrupted. This latter regression does not have a causal interpretation, since disruptions are defined in 
terms of low subway ridership in at least one station in the zone. However, it serves as an intuitive check 
that the model works as expected, and provides an estimate of the extent of displaced ridership. 

These coefficients allow us to consider the notion of proportionate substitution, i.e. the question of 
whether displaced subway riders choose alternatives with a probability proportional to these alternatives’ 
pre-existing market shares (Train 2009). If rider behavior is characterized by proportionate substitution, 
then we would expect the disruption coefficients to be equal across all modes (since the coefficients 
represent percent change relative to typical ridership). If, instead, displaced subway riders have a specific 
preference for Uber or Lyft, we would expect to see larger coefficients on the disruption variable for these 
modes. Our estimates show no evidence of such a preference for Uber and Lyft during periods of 
disruption; if anything, ridesharing sees a smaller estimated percentage increase in ridership than taxis 
during these periods.  

Alternative specification  

To ensure that the directions of our results are not specific to our particular baseline specification, we also 
present results using log ridership counts as the dependent variable.  Since we do not de-trend or de-
seasonalize the log ride count variable, we include a richer set of fixed effects than in the baseline 
specification. For each mode 𝑚, we (separately) estimate the model: 

  log (1 +  𝑟𝑖𝑡)    =    𝛽 disruption𝑖𝑡     +     𝛾𝑡     +     𝛼𝑖,ℎ(𝑡),𝑑(𝑡)
(1)

    +     𝛼𝑖,ℎ(𝑡),𝑑(𝑡)
(2)

 time𝑡     +   𝜖𝑖𝑡                    (3) 

where 𝛽, disruption𝑖𝑡, 𝛾𝑡, and 𝜖𝑖𝑡 are as above; 𝑟𝑖𝑡  represents ridership for zone 𝑖 in time 𝑡; 𝛼𝑖,ℎ(𝑡),𝑑(𝑡)
(1)

 is a set 

of zone-specific fixed effects for each four-hour period ℎ(𝑡) and day of the week 𝑑(𝑡);2 time𝑡  is a linear 

                                                             

2 For example, one dimension of 𝛼𝑖,ℎ(𝑡),𝑑(𝑡)
(1)

 could represent “zone 79 on a Monday from 12-4am.” 
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time trend; and 𝛼𝑖,ℎ(𝑡),𝑑(𝑡)
(2)

 is a set of coefficients that allow the slope of the linear trend to vary for each 

zone, hour, and day-of-week combination. In other words, 𝛼𝑖,ℎ(𝑡),𝑑(𝑡)
(2)

time𝑡  represents a set of time-varying 

zone fixed effects with intercepts 𝛼𝑖,ℎ(𝑡),𝑑(𝑡)
(1)

. This set of fixed effects was chosen because long-term trends 

in ridership may differ across zones. For example, a given mode might gain riders in some zones, and lose 
riders in other zones, with the passage of time. 

 

Table 2. Estimated Impact of Disruptions on Adjusted Ridership 

 
Adj.     

Yellow Taxi 
Adj.             

Green Taxi 
Adj.  
Uber 

Adj.     
Lyft 

Adj.         
Citi Bike 

Adj. 
Subway 

Disruption 0.082∗∗∗ 0.070∗∗∗ 0.028∗∗∗ 0.033∗∗∗ 0.001 -0.290∗∗∗ 
 (0.014) (0.015) (0.006) (0.006) (0.009) (0.044) 

Period FE Yes Yes Yes Yes Yes Yes 

Adjusted R-squared 0.035 0.08 0.189 0.112 0.281 0.186 
N Zones 153 115 153 153 69 153 

N Observations 1,136,720 852,531 1,144,732 1,064,103 414,406 1,144,710 
Mean Dep. Variable 0.96 0.98 1.00 1.00 1.00 1.00 

Average Marginal Effect 25.4 3.9 5.5 1.5 0.0 -1511.8 

* p<0.1, ** p<0.05, *** p<0.01. Standard errors in parentheses. Fixed effects were included for each four-hour 
period in the dataset. Errors were clustered by taxi zone ID.  

 

Table 3. Estimated Impact of Disruptions on Log Ridership 

 
Log     

Yellow Taxi 
Log             

Green Taxi 
Log   Uber 

Log     

 Lyft 

Log  

Citi Bike 

Log 
Subway 

Disruption 0.066∗∗∗ 0.076∗∗∗ 0.026∗∗∗ 0.044∗∗∗ 0.045 -1.188∗∗∗ 
 (0.014) (0.02) (0.009) (0.011) (0.037) (0.219) 

Period FE Yes Yes Yes Yes Yes Yes 
Zone-day-hour FE Yes Yes Yes Yes Yes Yes 
Time × Zone-day-

hour FE 
Yes Yes Yes Yes Yes Yes 

Adjusted R-squared 0.981 0.951 0.974 0.942 0.942 0.91 
N Zones 153 115 153 153 70 153 

N Observations 1,164,023 874,919 1,164,023 1,084,157 423,314 1,164,023 
Mean Dep. Variable 2.87 2.57 4.43 2.96 3.29 7.67 

Average Marginal 
Effect 21.8 4.6 10.3 2.0  -3593.0 

* p<0.1, ** p<0.05, *** p<0.01. Standard errors in parentheses. Fixed effects were included for each four-hour 
period in the dataset; time-varying fixed effects were also included for taxi zone ID/day of week/hour of day bins. 
Errors were clustered by taxi zone ID.  
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Figure 4. Average Marginal Effects, Disaggregated by Borough and Time 

 

The results, shown in Table 3, are consistent with our baseline specification. We estimate that disruptions 
are associated with an approximate 6.6% increase in yellow taxi ridership, a 7.6% increase in green taxi 
ridership, a 2.6% increase in Uber ridership, a 4.4% increase in Lyft ridership, and no significant change 
in Citi Bike ridership.  This model is less flexible than the preferred model, since it assumes a fixed linear 
time trend in ridership for each zone, day of week, and four-hour period rather than a moving average 
trend. However, both specifications are similar enough that the alignment of results is encouraging. 

Discussion and Policy Implications 

Thus far, our results support the hypothesis that taxi and ridesharing act as substitutes for public 
transportation during periods of subway service disruptions, and contradict the notion that ridesharing 
might be a “preferred” substitute during these periods. However, the impacts presented in percentage 
terms do not give a complete picture of the practical significance of this substitution behavior. In this 
section, we express the magnitude of substitution behavior in three ways. First, we convert percent 
changes in ridership to average marginal effects in rides. Second, we express the changes in taxi, 
ridesharing, and Citi Bike ridership relative to the total number of subway rides displaced. Finally, we 
express the changes in ridership relative to each mode’s total estimated capacity to absorb displaced 
subway riders. 

Marginal Effects 

We first convert our estimates from relative to absolute changes in ridership, in order to better 
understand the total number of riders affected. We generate estimates for adjusted ridership by mode 
with and without disruptions using Equation (2) and the fitted coefficients from Table 2. Then, we 
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multiply these estimates by the trend and seasonality estimates that were previously used to detrend and 
deseasonalize the raw ridership variable, as described in Equation (1). This allows us to calculate average 
estimated differences in rides by mode with and without disruptions. That is, for each mode 𝑚  we 
calculate: 

marginal effect𝑖𝑡  =  ( 𝔼 [ adjusted𝑖𝑡  | disruption𝑖𝑡 = 1 ,  𝛾𝑡  ]

 − 𝔼 [ adjusted𝑖𝑡  | disruption𝑖𝑡 = 0 ,  𝛾𝑡  ] )

×   trend𝑖𝑡   ×  seasonality𝑖,ℎ(𝑡),𝑑(𝑡)

                                 (4) 

The bottom row of Table 2 shows the estimated average marginal effect of disruptions citywide. According 
to our model, disruptions are associated with approximately 25.4 more yellow taxi rides, 3.9 more green 
taxi rides, 5.5 more Uber rides, 1.5 more Lyft rides, and no more Citi Bike rides, on average. Across the 
city as a whole, therefore, our estimates suggest that taxis absorb the largest number of displaced rides.  

However, if we recalculate these average marginal effects by borough, a more nuanced narrative emerges. 
As shown in the left panel of Figure 4, in Manhattan alone we estimate that disrupted zones see over 70 
additional yellow taxi rides per four-hour period, making yellow taxi the dominant alternative mode. In 
the outer boroughs, we estimate that green taxi, Uber, and Lyft play much larger roles. In Brooklyn and 
the Bronx, the estimated number of additional rides due to disruption for each of these three alternative 
modes surpasses the estimated change in yellow taxi ridership. If we further disaggregate these averages 
by year, as shown in the right panel of Figure 4, our estimates suggest that Uber and Lyft are playing an 
increasingly important role in absorbing displaced subway ridership as they gain market share over time, 
particularly in the outer boroughs. 

Effects as a fraction of subway ridership 

In addition to interpreting our estimated effects in absolute terms, it is also interesting to consider these 
effects as a fraction of displaced subway ridership. Therefore, for each mode 𝑚  and borough 𝑏  we 
calculate: 

1

|ℐ𝑏||𝒯|
∑ ∑

𝛥𝑖𝑚𝑡

|𝛥𝑖𝑠𝑡|𝑡∈𝒯𝑖∈ℐ𝑏
                                                                                 (5) 

where ℐ𝑏 is the set of all taxi zones in borough 𝑏, 𝒯 is the set of all four-hour time periods, 𝑠 represents the 
subway, and 𝛥 represents the estimated change in rides due to disruption. That is, we calculate the 
average change in rides for mode m as a fraction of the average change in subway rides for the given time 
period and borough. The results are shown in Figure 5. Comparing across modes and boroughs, we can 
see that the share of yellow taxi as an alternative falls in the outer boroughs. Aside from yellow taxi, the 
most important substitutes appear to be Uber, followed by green taxi, Lyft, and finally Citi Bike. 

Across all modes and boroughs, however, the estimated proportion of displaced ridership absorbed is 
small. According to our estimates, yellow taxi absorbs an average of 0–6.9% of rides, green taxi absorbs 
0.2–0.8% of rides, Uber absorbs 0.9–1.1% of rides, Lyft absorbs 0.2–0.4% of rides, and Citi Bike absorbs 
less than 0.1% of rides. Therefore, while disruptions may drive changes in taxi, ridesharing, and Citi Bike 
ridership that are meaningful relative to each mode’s average number of rides, these modes do not appear 
to be the preferred subway alternative for displaced riders. It seems likely that many riders choose modes 
that are omitted from our dataset (walking, buses, or cars), substitute to other subway stations in nearby 
zones, or forego their trips altogether. 

Effects Relative to Mode Capacity 

Finally, we consider the size of our estimated effects relative to each mode’s total capacity. For each mode 
m and taxi zone i, we define capacity to be the maximum ridership for a given year, four-hour period of 
the day, and day of week. This approach is taken because the availability of different modes may vary over 
time and space. Intuitively, the number of Uber cars on the road likely changed from 2015 to 2018; the 
number of Citi Bikes available in a dock might be different at 4-8pm on a Friday relative to 4-8am on a 
Sunday; and the number of yellow taxis in circulation might be different in Times Square relative to Far 
Rockaway.  
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Given these estimates, we define utilization as the ratio between the observed ridership and the total 
capacity for zone i, mode m, and period t:   

𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑖𝑚𝑡 =  
𝑟𝑖𝑚𝑡

max
𝒯𝑡

 𝑟𝑖𝑚𝑡
                                                                         (6) 

where 𝒯𝑡 represents the set of all time periods that share the same hour of day, day of week, and year as 
time 𝑡  and 𝑟𝑖𝑚𝑡  represents ridership. Intuitively, we ask: in Flushing, from 8am to 12pm on a given 
Monday in 2016, how does ridership compare to the maximum ridership ever observed in Flushing from 
8am to 12pm on any Monday in 2016? 

 

Figure 5. Estimated Effects as a Percentage of Displaced Subway Ridership (Log Scale) 

 

 

The solid line represents estimates without disruptions, whereas the dotted line represents estimates with 
disruptions. The x-axis is a sorted random sample from all taxi zones and periods, so that the graphs represent the 
distribution of utilization in our sample. 

Figure 6. Average Utilization With and Without Disruptions 
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Using this framework, we predict ridership with and without subway disruptions and estimate the 
corresponding utilization rates for all zones and periods. Figure 6 shows these estimated utilizations, 
plotted for a sorted random sample of zones and times. The space below the diagonal represents the 
distribution of utilized capacity across sampled times and zones, whereas the space above the diagonal 
represents the distribution of remaining capacity across sampled times and zones. The vertical distance 
between the dotted and horizontal lines represents how much predicted utilization differs for the given 
zone and time, with and without disruptions. 

From this analysis, we can conclude that all modes generally have excess capacity to absorb riders. The 
subway is the mode operating closest to its capacity limit, whereas it appears that taxis, ridesharing, and 
Citi Bike have considerable bandwidth to take on additional riders. During periods of disruption, we see 
that utilization is slightly higher for taxis and ridesharing.  However, utilization generally does not 
approach the estimated capacity limits for a given zone and mode, suggesting that the low levels of 
observed substitution do not result from a capacity constraint. Furthermore, we can see that for zones and 
times where utilization is low, we do not estimate larger substitution effects relative to total capacity. 
Therefore, it does not seem that capacity is a key limiting factor for substitution behavior.  

Conclusions 

To our knowledge, this research represents the first attempt to pair ridership data from digital platform-
based transit and traditional mass transit to investigate substitution at the individual ride level. Using 
subway disruptions as a natural experiment, we find that a decrease in public transportation availability is 
partially offset by an increase in taxi and ridesharing use, at least in the short run and in response to 
subway system shocks. We find no significant citywide effect on Citi Bike use. This finding has 
implications for cities around the world, as New York is just one of many urban areas struggling with the 
limited capacity of its existing public transit system and the declining condition of its infrastructure. As 
cities consider large-scale, long-term investments in transport system upgrades and repairs, platform-
based solutions may offer a flexible and responsive strategy for mitigating short-term inefficiencies.   

However, our results suggest that ridesharing is not a panacea. By observing behavior in extreme 
scenarios — i.e. short-run disruptions in which a given subway station sees no entries for four hours or 
more — we attempt to identify the number of public transport users who, in the limit, can be convinced on 
short notice to switch from one mode to another. Somewhat surprisingly, our estimated magnitude of 
substitution is modest. Our analysis of other modes — i.e. yellow and green taxi — suggests that 
substitution away from the subway does not favor ridesharing in particular, perhaps because of the 
immediacy of the availability of these street-hail options.  

Furthermore, taxi, ridesharing, and Citi Bike absorb only a small fraction of displaced subway riders, and 
they appear to have excess capacity to absorb more. This suggests that these alternative modes have the 
potential to play a larger role as “invisible infrastructure” supporting the public transit system. A 
platform-based approach of this kind could yield benefits across a range of city settings, from short-term 
accommodation and parking space demand spikes during major events to disaster recovery and 
coordination. Since multiple platforms compete to provide their services in most major cities globally, a 
city wishing to encourage or expand these alternatives may have to adopt strategies that enable multiple 
competing vendors to cooperate and coordinate (Bapna et al., 2010).   

 Our analysis also suggests that on-demand digital ridesharing platforms may not be perfect substitutes 
for public transit, perhaps due to differences in price or travel time. While the MTA’s fears that 
ridesharing is stealing subway ridership may be valid, our results indicate that many riders do not 
voluntarily substitute, even when the subway is no longer available. 

While these findings lay the groundwork for further study, our work has several potential limitations. 
Although we treat subway disruptions as a natural experiment for the study of short-term substitution 
behavior, disruptions are not a wholly exogenous shock. Planned disruptions may be optimally scheduled 
when subway ridership is low (and on-demand ridesharing use is high) in order to minimize system 
impact, a concern we have tried to overcome through the use of period fixed effects. Disruptions also 
affect some zones more than others, a concern we have tried to overcome by normalizing the dependent 
variable using zone-level average ridership. Nevertheless, there is still a risk that unplanned disruptions 
are correlated with omitted variables (e.g. subway system crowding) that could also drive ridesharing use. 
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Furthermore, Uber and Lyft’s own competitive behavior may introduce distortions into observed 
substitution patterns. For example, in the past Uber has run promotions to coincide with periods when 
disruptions occur (Ninomiya 2015). Both companies use dynamic pricing that could artificially reduce the 
viability of ridesharing as a substitute in periods of high demand. Since promotions and dynamic pricing 
are core components of the ridesharing business model, we do not adjust our estimates to account for 
them; in order to understand substitution behavior “as-is”, we take these practices as given. 

Ultimately, we have chosen to examine one facet of the complex and dynamic interaction between 
transport modes across the city, and future work could make use of additional data to extend this research 
in three principal directions. First, with access to richer information on subway service changes, a more 
nuanced definition of subway service disruptions could be constructed. In this case, it might be possible to 
contrast the impact of planned and unplanned disruptions; estimate varying impacts of disruptions 
according to their severity; and examine long-run responses to chronic declines in subway service quality. 
Second, with better estimates of the total number of riders in a taxi zone in any given period, it might be 
possible to construct more complete market share estimates that could be used as inputs to a discrete 
choice model. This would allow for an exploration of how factors such as price and travel time affect the 
choice of alternative modes. Finally, with better information on Uber and Lyft’s pricing and promotion 
strategies, it might be possible to directly account for price endogeneity in such a model. 

We hope to lay a data-driven foundation to better understand how on-demand ridesharing alternatives 
substitute and complement existing and future capital-intensive transit systems. Taken together, our 
results provide granular insights into how ridesharing affects mode choice in the most heavily-used 
municipal transportation system in the US — a valuable asset to any policymaker looking to understand 
and manage the sharing economy’s new competitors. 

  

References 

Anderson, M. L. 2014. “Subways, Strikes, and Slowdowns: The Impacts of Public Transit on Traffic 
Congestion,” American Economic Review (104:9), pp. 2763–2796. 
(https://doi.org/10.1257/aer.104.9.2763). 

Babar, Y., and Burtch, G. 2017. “Examining the Impact of Ridehailing Services on Public Transit Use,” 
SSRN Scholarly Paper No. 3042805, Rochester, NY: Social Science Research Network, September 
25. (https://papers.ssrn.com/abstract=3042805). 

Ben-Akiva, M. E. 2008. Travel Demand Modeling, presented at the Transportation Systems Analysis: 
Demand & Economics, Massachusetts Institute of Technology. (http://ocw.mit.edu/courses/civil-
and-environmental-engineering/1-201j-transportation-systems-analysis-demand-and-
economics-fall-2008/lecture-notes/MIT1_201JF08_lec05.pdf). 

Ben-Akiva, M. E., and Lerman, S. R. 1985. Discrete Choice Analysis: Theory and Application to Travel 
Demand, MIT Press. 

Citi Bike NYC. 2018. “Citi Bike System Data.” (http://www.citibikenyc.com/system-data). 
Clewlow, R. R., and Mishra, G. S. 2017. “Disruptive Transportation: The Adoption, Utilization, and 

Impacts of Ride-Hailing in the United States,” No. UCD-ITS-RR-17-07, Davis, CA: UC Davis 
Institute of Transportation Studies, October. 

Davis, L. W. 2008. “The Effect of Driving Restrictions on Air Quality in Mexico City,” Journal of Political 
Economy (116:1), pp. 38–81. (https://doi.org/10.1086/529398). 

Donahue, K. 2015. “Uber and Public Transit Working Hand in Hand in San Diego,” Uber Newsroom, 
February 3. (http://newsroom.uber.com/sd/2015/02/uber-and-public-transit-working-hand-in-
hand-in-san-diego/). 

Federal Transit Administration. 2019. “Monthly Module Raw Data Release,” Text. 
(https://www.transit.dot.gov/ntd/data-product/monthly-module-raw-data-release). 

Fischer-Baum, R., and Bialik, C. 2015. “Uber Is Taking Millions of Manhattan Rides Away From Taxis,” 
FiveThirtyEight, October 13. (http://fivethirtyeight.com/features/uber-is-taking-millions-of-
manhattan-rides-away-from-taxis/). 

Gordon, A. 2018. “‘The Trains Are Slower Because They Slowed the Trains Down,’” Village Voice. 
(https://www.villagevoice.com/2018/03/13/the-trains-are-slower-because-they-slowed-the-
trains-down/). 



 Ridesharing and the Use of Public Transportation 
  

 Fortieth International Conference on Information Systems, Munich 2019 17 

Hall, J. D., Palsson, C., and Price, J. 2018. “Is Uber a Substitute or Complement for Public Transit?” 
Journal of Urban Economics (108), pp. 36–50. (https://doi.org/10.1016/j.jue.2018.09.003). 

Leader, J., and Cafiero, P. 2015. “NYCT Subway Performance,” May. 
(http://web.mta.info/mta/news/books/docs/150518_SubwayPerformance.pdf). 

Lyft. 2015. “Friends with Transit,” Lyft. (http://take.lyft.com/friendswithtransit/). 
Metropolitan Transportation Authority. 2018a. “The MTA Network: Public Transportation for the New 

York Region.” (http://web.mta.info/mta/network.htm). 
Metropolitan Transportation Authority. 2018b. “Turnstile Data.” 

(http://web.mta.info/developers/turnstile.html). 
Metropolitan Transportation Authority. 2019. “New York City Transit - History and Chronology.” 

(http://web.mta.info/nyct/facts/ffhist.htm). 
Nelson, E., and Sadowsky, N. 2017. The Impact of Ride-Hailing Services on Public Transportation Use: A 

Discontinuity Regression Analysis. (https://digitalcommons.bowdoin.edu/econpapers/13/). 
Ninomiya, K. 2014. “Uber Announces Second Avenue Subway Expansion,” Uber Newsroom, April 1. 

(https://newsroom.uber.com/uber-announces-second-avenue-subway-expansion-2/). 
Ninomiya, K. 2015. “$5 for 5 Weekends,” Uber Newsroom, April 17. (https://newsroom.uber.com/us-

new-york/5-for-5-weekends/). 
NYC Department of Transportation. 2017. “Citywide Mobility Survey,” NYC Department of 

Transportation, August. (http://www.nyc.gov/html/dot/downloads/pdf/nycdot-citywide-
mobility-survey-report-2017.pdf). 

NYC Department of Transportation. 2018. “New York City Mobility Report,” NYC Department of 
Transportation, June. (http://www.nyc.gov/html/dot/downloads/pdf/mobility-report-2018-
screen-optimized.pdf). 

Taxi and Limousine Commission. 2018a. “TLC Trip Record Data.” 
(http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml). 

Taxi and Limousine Commission. 2018b. “Your Guide to Boro Taxis.” 
(http://www.nyc.gov/html/tlc/html/passenger/shl_passenger.shtml). 

Train, K. E. 2009. Discrete Choice Methods with Simulation, Cambridge University Press. 
(https://eml.berkeley.edu/books/choice2.html). 

Walk Score. 2019. “Cities & Neighborhoods.” (http://walkscore.com/cities-and-neighborhoods/). 
 
 


